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The problem

Find X ∈ R
n×n such that

AX+XA
⊤ −XBB

⊤
X+ C

⊤
C = 0

with A ∈ R
n×n, B ∈ R

n×p, C ∈ R
s×n, p, s = O(1)

Rich literature on analysis, applications and numerics:

Lancaster-Rodman 1995, Bini-Iannazzo-Meini 2012, Mehrmann etal 2003 ...

We focus on the large scale case: n ≫ 1000

Different strategies

(Inexact) Kleinman iteration (Newton-type method)

Projection methods

Invariant subspace iteration

(Sparse) multilevel methods

....
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Newton-Kleinman iteration

Assume A stable. Compute sequence {Xk} with Xk →k→∞ X

(A−XkBB
⊤)Xk+1 +Xk+1(A

⊤ −BB
⊤
Xk) + C

⊤
C +XkBB

⊤
Xk = 0

1: Given X0 ∈ R
n×n such that X0 = X⊤

0 , A
⊤ −BB⊤X0 is stable

2: For k = 0, 1, . . . , until convergence

3: Set A⊤

k = A⊤ −BB⊤Xk

4: Set C⊤

k = [XkB, C⊤]

5: Solve AkXk+1 +Xk+1A
⊤

k + C⊤

k Ck = 0

Critical issues:

The full matrix Xk cannot be stored (sparse or low-rank approx)

Need a computable stopping criterion

Each iteration k requires the solution of the Lyapunov equation:

(Benner, Feitzinger, Hylla, Saak, Sachs, ...)

7



Newton-Kleinman iteration

Assume A stable. Compute sequence {Xk} with Xk →k→∞ X

(A−XkBB
⊤)Xk+1 +Xk+1(A

⊤ −BB
⊤
Xk) + C

⊤
C +XkBB

⊤
Xk = 0

1: Given X0 ∈ R
n×n such that X0 = X⊤

0 , A
⊤ −BB⊤X0 is stable

2: For k = 0, 1, . . . , until convergence

3: Set A⊤

k = A⊤ −BB⊤Xk

4: Set C⊤

k = [XkB, C⊤]

5: Solve AkXk+1 +Xk+1A
⊤

k + C⊤

k Ck = 0

Critical issues:

The full matrix Xk cannot be stored (sparse or low-rank approx)

Need a computable stopping criterion

Each iteration k requires the solution of the Lyapunov equation:

(Benner, Feitzinger, Hylla, Saak, Sachs, ...)

8



Newton-Kleinman iteration

Assume A stable. Compute sequence {Xk} with Xk →k→∞ X

(A−XkBB
⊤)Xk+1 +Xk+1(A

⊤ −BB
⊤
Xk) + C

⊤
C +XkBB

⊤
Xk = 0

1: Given X0 ∈ R
n×n such that X0 = X⊤

0 , A
⊤ −BB⊤X0 is stable.

2: For k = 0, 1, . . . , until convergence

3: Set A⊤

k = A⊤ −BB⊤Xk

4: Set C⊤

k = [XkB, C⊤]

5: Solve AkXk+1 +Xk+1A
⊤

k + C⊤

k Ck = 0

Critical issues:

• The full matrix Xk cannot be stored (sparse or low-rank approx)

• Need a computable stopping criterion

• Each iteration k requires the solution of the Lyapunov equation

(Benner, Feitzinger, Hylla, Saak, Sachs, ...)

9



Galerkin projection method for the Riccati equation

Given the orth basis Vk for an approximation space, determine

Xk = VkYkV
⊤

k

to the Riccati solution matrix by orthogonal projection:

Galerkin condition: Residual orthogonal to approximation space

V
⊤

k (AXk +XkA
⊤ −XkBB

⊤
Xk + C

⊤
C)Vk = 0

giving the reduced Riccati equation

(V ⊤

k AVk)Y +Y(V ⊤

k A
⊤
Vk)−Y(V ⊤

k BB
⊤
Vk)Y + (V ⊤

k C
⊤)(CVk) = 0

Yk is the stabilizing solution (Jaimoukha-Kasenally 1994, Heyouni-Jbilou 2009)

Key questions:

Which approximation space?

Is this meaningful from a Control Theory perspective?
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Dynamical systems and the Riccati equation

AX+XA⊤ −XBB⊤
X+ C⊤C = 0

Time-invariant linear system




ẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t),

u(t) : control (input) vector; y(t) : output vector

x(t) : state vector; x0 : initial state

Minimization problem for a Cost functional: (simplified form)

inf
u

J (u, x0) J (u, x0) :=

∫ ∞

0

(x(t)⊤C⊤Cx(t) + u(t)⊤u(t))dt
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Dynamical systems and the Riccati equation

AX+XA⊤ −XBB⊤
X+ C⊤C = 0

inf
u

J (u, x0) J (u, x0) :=

∫ ∞

0

(
x(t)⊤C⊤Cx(t) + u(t)⊤u(t)

)
dt

theorem Let the pair (A,B) be stabilizable and (C,A) observable.

Then there is a unique solution X ≥ 0 of the Riccati equation. More-

over,

i) For each x0 there is a unique optimal control, and it is given by

u∗(t) = −B⊤
X exp((A−BB⊤

X)t)x0 for t ≥ 0

ii) J (u∗, x0) = x⊤0 Xx0 for all x0 ∈ R
n

see, e.g., Lancaster & Rodman, 1995
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Order reduction of dynamical systems by projection

Let Vk ∈ R
n×dk have orthonormal columns, dk ≪ n

Let Tk = V ⊤
k AVk, Bk = V ⊤

k B, C⊤
k = V ⊤

k C
⊤

Reduced order dynamical system:





˙̂x(t) = Tkx̂(t) +Bkû(t), x̂(0) = x̂0 :=V ⊤
k x0

ŷ(t) = Ckx̂(t)

xk(t) = Vkx̂(t) ≈ x(t)

Typical frameworks:

• Transfer function approximation

• Model reduction
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The role of the projected Riccati equation

Consider again the reduced Riccati equation:

(V ⊤
k AVk)Y +Y(V ⊤

k A
⊤Vk)−Y(V ⊤

k BB
⊤Vk)Y + (V ⊤

k C
⊤)(CVk) = 0

that is

TkY +YT⊤
k −YBkB

⊤
k Y + C⊤

k Ck = 0 (∗)

Theorem. Let the pair (Tk, Bk) be stabilizable and (Ck, Tk) observ-

able. Then there is a unique solution Yk ≥ 0 of (*) that for each x̂0

gives the feedback optimal control

û∗(t) = −B∗
kYk exp((Tk −BkB

∗
kYk)t)x̂0, t ≥ 0

for the reduced system.

If there exists a matrix K such that A−BK is passive, then the pair

(Tk, Bk) is stabilizable.
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pair (Tk, Bk) is stabilizable.
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Projected optimal control vs approximate control

⋆ Our projected optimal control function:

û∗(t) = −B⊤
k Yk exp((Tk −BkB

⊤
k Yk)t)x̂0, t ≥ 0

with Xk = VkYkV
⊤
k

⋆ Commonly used approximate control function:

If X̃ is some approximation to X, then

ũ(t) := −B⊤
X̃x̃(t)

where x̃(t) := exp((A−BB⊤
X̃)t)x0

û∗ 6= ũ

They induce different actions on the functional J , even for X̃ = Xk
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Projected optimal control vs approximate control

Xk = VkYkV
⊤
k

Residual matrix: Rk := AXk +XkA−XkBB
⊤
Xk + C⊤C

⋆ Projected optimal control function:

û∗(t) = −B⊤
k Yk exp((Tk −BkB

⊤
k Yk)t)

theorem. Assume that A − BB⊤
Xk is stable and that ũ(t) :=

−B⊤
Xkx(t) approx control. Then

|J (ũ, x0)− Ĵk(û∗, x̂0)| = Ek, with Ek ≤ ‖Rk‖
2α

x⊤0 x0,

where α > 0 is such that ‖e(A−BB⊤
Xk)t‖ ≤ e−αt for all t ≥ 0.

Note: |J (ũ, x0)− Ĵk(û∗, x̂0)| is nonzero for Rk 6= 0
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On the choice of approximation space

Approximate solution Xk = VkYkV
⊤

k , with

(V ⊤

k AVk)Yk +Yk(V
⊤

k A
⊤
Vk)−Yk(V

⊤

k BB
⊤
Vk)Yk + (V ⊤

k C
⊤)(CVk) = 0

Krylov-type subspaces: (extensively used in the linear case)

• Kk(A,C⊤) := Range([C⊤, AC⊤, . . . , Ak−1C⊤]) (Polynomial)

• EKk(A,C⊤) := Kk(A,C⊤) +Kk(A
−1, A−1C⊤) (EKS, Rational)

• RKk(A,C⊤, s) :=

Range([C⊤, (A− s2I)
−1C⊤, . . . ,

k−1∏

j=1

(A− sj+1I)
−1

C
⊤])

(RKS, Rational)

⋆ Matrix BB⊤ not involved

⋆ Parameters sj (adaptively) chosen in field of values of −A

Druskin-Simoncini, 2011
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Performance of solvers

Problem: A: 3D Laplace operator, B, C randn matrices, tol=10−8

(n, p, s) = (125000, 5, 5)

its inner its time space dim rank(Xf )

Newton X0 = 0 15 5, . . . , 5 808 100 95

GP-EKS 20 531 200 105

GP-RKS 25 524 125 105

(n, p, s) = (125000, 20, 20)

its inner its time space dim rank(Xf )

Newton X0 = 0 19 5, . . . , 5 2332 400 346

GP-EKS 15 622 600 364

GP-RKS 20 720 400 358

GP=Galerkin projection

(V.Simoncini & D.Szyld & M.Monsalve, 2014)
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A numerical example on the role of BB⊤

Consider the 500× 500 Toeplitz matrix

A = toeplitz(−1, 2.5, 1, 1, 1), C = [1,−2, 1,−2, . . .], B = 1
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Parameter computation:

Left: adaptive RKS on A Right: adaptive RKS on A−BB⊤Xk

(Lin & Simoncini 2015)
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On the residual matrix and adaptive RKS

Rk := AXk +XkA−XkBB
⊤
Xk + C⊤C

theorem. Let Tk = Tk −BkB
⊤
k Yk. Then

Rk = R̂kV
⊤
k + VkR̂

⊤
k , with R̂k = AVkYk + VkYkT ⊤

k + C⊤(CVk)

so that ‖Rk‖F =
√
2‖R̂k‖F

At least formally:

⇒ VkYkV
⊤
k is a solution to the Riccati equation (Rk = 0) if and only

if Zk = VkYk is the solution to the Sylvester equation (R̂k = 0)
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On the residual matrix and adaptive RKS

Rk = R̂kV
⊤
k + VkR̂

⊤
k

Expression for the semi-residual R̂k:

theorem. Assume C⊤ ∈ R
n, Range(Vk)= RKk(A,C

⊤, s). Assume

that Tk = Tk −BkB
⊤
k Yk is diagonalizable. Then

R̂k = ψk,Tk
(A)C⊤CVk(ψk,Tk

(−T ⊤
k ))−1.

where

ψk,Tk
(z) =

det(zI − Tk)∏k
j=1(z − sj)

(see also Beckermann 2011 for the linear case)
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On the choice of the next parameters sk+1

R̂k = ψk,Tk
(A)C⊤CVk(ψk,Tk

(−T ⊤
k ))−1.

with ψk,Tk
(z) = det(zI−Tk)∏

k
j=1

(z−sj)

⋆ Greedy strategy: Next shift should make (ψk,Tk
(−T ⊤

k ))−1 smaller

⇓

Determine for which s in the spectral region of Tk the quantity

(ψk,Tk
(−s))−1 is large, and add a root there

sk+1 = arg max
s∈∂Sk

∣∣∣∣
1

ψk,Tk
(s)

∣∣∣∣

Sk region enclosing the eigenvalues of −Tk = −(Tk −BkB
⊤
k Yk)

(This argument is new also for linear equations)
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Selection of sk+1 in RKS. An example

A: 900× 900 2D Laplacian, B = t1 with tj = 5 · 10−j ,

C = [1,−2, 1,−2, 1,−2, ...]
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Further results not presented but relevant

• Stabilization properties of the approx solution Xk

• Accuracy tracking as the approximation space grows

• Interpretation via invariant subspace approximation

(V.Simoncini, 2016)

Wrap-up

Projection-type methods fill the gap between MOR and Riccati

equation

Clearer role of the non-linear term during the projection
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Outlook

♠ Petrov-Galerkin projection (à la Balanced truncation)

(work in progress, with A. Alla, Florida State Univ.)

♠ Projected Differential Riccati equations

(see, e.g., Koskela & Mena, tr 2017)

♠ Parameterized Algebraic Riccati equations

(see, e.g., Schmidt & Haasdonk, tr 2017)
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